Saturday, October 8, 2016

Wat is eksponensieel geweeg bewegende gemiddelde

Geweegde Moving Gemiddeldes: Die Basics Oor die jare, het tegnici twee probleme met die eenvoudige bewegende gemiddelde gevind. Die eerste probleem lê in die tyd van die bewegende gemiddelde (MA). Die meeste tegniese ontleders glo dat die prys aksie. die opening of sluiting voorraad prys, is nie genoeg om op te hang vir goed voorspel koop of te verkoop seine van die MA crossover aksie. Om hierdie probleem op te los, het ontleders nou meer gewig toeken aan die mees onlangse prys data deur gebruik te maak van die eksponensieel stryk bewegende gemiddelde (EMA). (Meer inligting in die ondersoek van die eksponensieel geweeg bewegende gemiddelde.) 'N voorbeeld Byvoorbeeld, met behulp van 'n 10-dag MA, sou 'n ontleder die sluitingsprys van die 10de dag te neem en vermeerder hierdie getal deur 10, die negende dag van nege, die agtste van dag tot agt en so aan tot die eerste van die MA. Sodra die totale bepaal, sou die ontleder dan verdeel die aantal deur die byvoeging van die vermenigvuldigers. As jy die vermenigvuldigers van die 10-dag MA voorbeeld te voeg, die getal is 55. Hierdie aanwyser is bekend as die lineêr geweeg bewegende gemiddelde. (Vir verwante leesstof, check Eenvoudige bewegende gemiddeldes Maak Trends uitstaan.) Baie tegnici is ferm gelowiges in die eksponensieel stryk bewegende gemiddelde (EMA). Hierdie aanwyser is verduidelik in so baie verskillende maniere waarop dit verwar studente en beleggers sowel. Miskien is die beste verduideliking kom van John J. Murphy tegniese ontleding van die finansiële markte, (uitgegee deur die New York Instituut van Finansies, 1999): Die eksponensieel stryk bewegende gemiddelde adresse beide van die probleme wat verband hou met die eenvoudige bewegende gemiddelde. Eerstens, die eksponensieel stryk gemiddelde ken 'n groter gewig aan die meer onlangse data. Daarom is dit 'n geweegde bewegende gemiddelde. Maar terwyl dit ken mindere belang vir verlede prys data, beteken dit sluit in die berekening al die data in die lewe van die instrument. Daarbenewens het die gebruiker in staat is om die gewig te pas by mindere of meerdere gewig te gee aan die mees onlangse dae prys, wat by 'n persentasie van die vorige dae waarde. Die som van beide persentasie waardes voeg tot 100. Byvoorbeeld, die laaste dae die prys kan 'n gewig van 10 (0,10), wat by die vorige dae gewig van 90 (0,90) opgedra. Dit gee die laaste dag 10 van die totale gewig. Dit sou die ekwivalent van 'n 20-dag gemiddeld deur die laaste dae die prys 'n kleiner waarde van 5 (0,05) wees. Figuur 1: eksponensieel stryk bewegende gemiddelde Bogenoemde grafiek toon die Nasdaq saamgestelde indeks van die eerste week in Augustus 2000 tot 1 Junie 2001 As jy duidelik kan sien, die EMO, wat in hierdie geval is die gebruik van die sluitingsprys data oor 'n tydperk van nege dae, het definitiewe verkoop seine op die 8 September (gekenmerk deur 'n swart afpyltjie). Dit was die dag toe die indeks het onder die vlak 4000. Die tweede swart pyl toon 'n ander af been wat tegnici eintlik verwag het nie. Die Nasdaq kon genoeg volume en belangstelling van die kleinhandel beleggers na die 3000 merk breek nie genereer. Dit dan duif weer af na onder uit by 1619,58 op April 4. Die uptrend van 12 April is gekenmerk deur 'n pyl. Hier is die indeks gesluit 1,961.46, en tegnici begin institusionele fondsbestuurders begin om af te haal 'n paar winskopies soos Cisco, Microsoft en 'n paar van die energie-verwante kwessies te sien. (Lees ons verwante artikels: Moving Gemiddelde Koeverte: Verfyning 'n gewilde Trading Tool en bewegende gemiddelde Bounce.) QuotHINTquot is 'n akroniem wat staan ​​vir vir quothigh inkomste nie taxes. quot Dit is van toepassing op 'n hoë-verdieners wat verhoed dat die betaling federale inkomste. 'N Mark outeur wat koop en verkoop baie kort termyn korporatiewe effekte genoem kommersiële papier. 'N papier handelaar is tipies. 'N bestelling geplaas met 'n makelaar om 'n sekere aantal aandele te koop of te verkoop teen 'n bepaalde prys of beter. Die onbeperkte koop en verkoop van goedere en dienste tussen lande sonder die oplegging van beperkings soos. In die sakewêreld, 'n buffel is 'n maatskappy, gewoonlik 'n aanloop wat nie 'n gevestigde prestasie rekord. 'N Bedrag n huiseienaar moet betaal voordat versekering sal dek die skade wat veroorsaak word deur 'n hurricane. Exploring Die eksponensieel Geweegde Moving Gemiddelde Volatiliteit is die mees algemene maatstaf van risiko, maar dit kom in verskeie geure. In 'n vorige artikel het ons gewys hoe om eenvoudige historiese wisselvalligheid te bereken. (Om hierdie artikel te lees, sien Die gebruik van Volatiliteit Om toekomstige risiko te meet.) Ons gebruik Googles werklike aandele prys data om daaglikse wisselvalligheid gebaseer op 30 dae van voorraad data bereken. In hierdie artikel, sal ons verbeter op eenvoudige wisselvalligheid en bespreek die eksponensieel geweeg bewegende gemiddelde (EWMA). Historiese Vs. Geïmpliseer Volatiliteit Eerste, laat sit hierdie metrieke in 'n bietjie van perspektief. Daar is twee breë benaderings: historiese en geïmpliseer (of implisiete) wisselvalligheid. Die historiese benadering veronderstel dat verlede is proloog ons geskiedenis te meet in die hoop dat dit voorspellende. Geïmpliseerde wisselvalligheid, aan die ander kant, ignoreer die geskiedenis wat dit oplos vir die wisselvalligheid geïmpliseer deur markpryse. Hulle hoop dat die mark weet die beste en dat die markprys bevat, selfs al is implisiet, 'n konsensus skatting van wisselvalligheid. (Vir verwante leesstof, sien die gebruike en beperkinge van Volatiliteit.) As ons fokus op net die drie historiese benaderings (op die bogenoemde links), hulle het twee stappe in gemeen: Bereken die reeks periodieke opgawes Pas 'n gewig skema Eerstens, ons bereken die periodieke terugkeer. Dis gewoonlik 'n reeks van die daaglikse opgawes waar elke terugkeer uitgedruk in voortdurend saamgestel terme. Vir elke dag, neem ons die natuurlike log van die verhouding van aandele pryse (dit wil sê die prys vandag gedeel deur die prys gister, en so aan). Dit veroorsaak 'n reeks van die daaglikse opbrengs van u ek u i-m. afhangende van hoeveel dae (m dae) ons meet. Dit kry ons by die tweede stap: Dit is hier waar die drie benaderings verskil. In die vorige artikel (Die gebruik van Volatiliteit Om toekomstige risiko Gauge), ons het getoon dat onder 'n paar aanvaarbare vereenvoudigings, die eenvoudige afwyking is die gemiddeld van die kwadraat opbrengste: Let daarop dat hierdie som elk van die periodieke opgawes, verdeel dan wat totaal deur die aantal dae of waarnemings (m). So, dit is regtig net 'n gemiddeld van die kwadraat periodieke opgawes. Anders gestel, is elke vierkant terugkeer gegee 'n gelyke gewig. So as alfa (a) is 'n gewig faktor (spesifiek, 'n 1 / m), dan 'n eenvoudige variansie lyk iets soos hierdie: Die EWMA Verbeter op Eenvoudige Variansie Die swakheid van hierdie benadering is dat alle opgawes verdien dieselfde gewig. Yesterdays (baie onlangse) terugkeer het geen invloed meer op die variansie as verlede maande terugkeer. Hierdie probleem is opgelos deur die gebruik van die eksponensieel geweeg bewegende gemiddelde (EWMA), waarin meer onlangse opbrengste het 'n groter gewig op die variansie. Die eksponensieel geweeg bewegende gemiddelde (EWMA) stel lambda. wat die smoothing parameter genoem. Lambda moet minstens een wees. Onder daardie toestand, in plaas van gelyke gewigte, elke vierkant terugkeer is geweeg deur 'n vermenigvuldiger soos volg: Byvoorbeeld, RiskMetrics TM, 'n finansiële risikobestuur maatskappy, is geneig om 'n lambda van 0,94, of 94. gebruik in hierdie geval, die eerste ( mees onlangse) kwadraat periodieke terugkeer is geweeg deur (1-0,94) (. 94) 0 6. die volgende kwadraat terugkeer is bloot 'n lambda-veelvoud van die vorige gewig in hierdie geval 6 vermenigvuldig met 94 5.64. En die derde voor dae gewig gelyk (1-0,94) (0.94) 2 5,30. Dis die betekenis van eksponensiële in EWMA: elke gewig is 'n konstante vermenigvuldiger (dit wil sê lambda, wat moet wees minder as een) van die dae gewig voor. Dit sorg vir 'n afwyking wat geweeg of voorkeur vir meer onlangse data. (Vir meer inligting, kyk na die Excel Werkkaart vir Googles Volatiliteit.) Die verskil tussen net wisselvalligheid en EWMA vir Google word hieronder getoon. Eenvoudige wisselvalligheid effektief weeg elke periodieke terugkeer deur 0,196 soos uiteengesit in kolom O (ons het twee jaar van die daaglikse aandeleprys data. Dit is 509 daaglikse opgawes en 1/509 0,196). Maar let op dat Kolom P ken 'n gewig van 6, dan 5.64, dan 5.3 en so aan. Dis die enigste verskil tussen eenvoudige variansie en EWMA. Onthou: Nadat ons die hele reeks (in kolom Q) het ons die variansie, wat is die kwadraat van die standaardafwyking som. As ons wil hê wisselvalligheid, moet ons onthou om die vierkantswortel van daardie afwyking te neem. Wat is die verskil in die daaglikse wisselvalligheid tussen die variansie en EWMA in Googles geval beduidende: Die eenvoudige variansie het ons 'n daaglikse wisselvalligheid van 2,4, maar die EWMA het 'n daaglikse wisselvalligheid van slegs 1.4 (sien die sigblad vir besonderhede). Blykbaar, Googles wisselvalligheid bedaar meer onlangs dus kan 'n eenvoudige variansie kunsmatig hoog wees. Vandag se afwyking is 'n funksie van Pior Dae Variansie Youll kennisgewing wat ons nodig het om 'n lang reeks van eksponensieel afneem gewigte bereken. Ons sal nie die wiskunde doen hier, maar een van die beste eienskappe van die EWMA is dat die hele reeks gerieflik verminder tot 'n rekursiewe formule: Rekursiewe beteken dat vandag se stryd verwysings (dit wil sê 'n funksie van die vorige dae variansie). Jy kan hierdie formule in die sigblad ook, en dit lei tot die presies dieselfde resultaat as die skuldbewys berekening Dit sê: Vandag se variansie (onder EWMA) gelyk yesterdays variansie (geweeg volgens lambda) plus yesterdays kwadraat terugkeer (geweeg deur een minus lambda). Let op hoe ons net bymekaar te tel twee terme: yesterdays geweegde variansie en yesterdays geweeg, vierkantig terugkeer. Net so is, lambda is ons glad parameter. 'N Hoër lambda (bv soos RiskMetrics 94) dui stadiger verval in die reeks - in relatiewe terme, gaan ons meer datapunte in die reeks en hulle gaan stadiger af te val. Aan die ander kant, as ons die lambda verminder, dui ons hoër verval: die gewigte val vinniger af en, as 'n direkte gevolg van die snelle verval, is minder datapunte gebruik. (In die sigblad, lambda is 'n inset, sodat jy kan eksperimenteer met sy sensitiwiteit). Opsomming Volatiliteit is die oombliklike standaardafwyking van 'n voorraad en die mees algemene risiko metrieke. Dit is ook die vierkantswortel van variansie. Ons kan variansie histories of implisiet (geïmpliseer wisselvalligheid) te meet. Wanneer histories meet, die maklikste metode is eenvoudig variansie. Maar die swakheid met 'n eenvoudige afwyking is alle opgawes kry dieselfde gewig. So staan ​​ons voor 'n klassieke kompromis: ons wil altyd meer inligting, maar hoe meer data het ons die meer ons berekening verwater deur verre (minder relevant) data. Die eksponensieel geweeg bewegende gemiddelde (EWMA) verbeter op eenvoudige variansie deur die toeken van gewigte aan die periodieke opgawes. Deur dit te doen, kan ons albei gebruik 'n groot monster grootte, maar ook 'n groter gewig te gee aan meer onlangse opbrengste. (Om 'n fliek handleiding te sien oor hierdie onderwerp, besoek die Bionic skilpad.) QuotHINTquot is 'n akroniem wat staan ​​vir vir quothigh inkomste nie taxes. quot Dit is van toepassing op 'n hoë-verdieners wat verhoed dat die betaling federale inkomste. 'N Mark outeur wat koop en verkoop baie kort termyn korporatiewe effekte genoem kommersiële papier. 'N papier handelaar is tipies. 'N bestelling geplaas met 'n makelaar om 'n sekere aantal aandele te koop of te verkoop teen 'n bepaalde prys of beter. Die onbeperkte koop en verkoop van goedere en dienste tussen lande sonder die oplegging van beperkings soos. In die sakewêreld, 'n buffel is 'n maatskappy, gewoonlik 'n aanloop wat nie 'n gevestigde prestasie rekord. 'N Bedrag n huiseienaar moet betaal voordat versekering sal die skade wat veroorsaak word deur 'n hurricane. EWMA 101 Die EWMA benadering dek het 'n aantreklike kenmerk: dit relatief min data wat gestoor word vereis. Om ons skatting op enige punt op te dateer, ons moet net 'n vorige skatting van die variansie koers en die mees onlangse waarneming waarde. 'N Sekondêre doel van EWMA is om veranderinge in die wisselvalligheid op te spoor. Vir klein waardes, Onlangse waarnemings beïnvloed die skatting stiptelik. Vir waardes nader aan een, die skatting veranderinge stadig gebaseer op onlangse veranderings in die opbrengste van die onderliggende veranderlike. Die RiskMetrics databasis (wat deur JP Morgan en openbaar gemaak beskikbaar) gebruik die EWMA met vir die opdatering daagliks wisselvalligheid. BELANGRIK: Die EWMA formule nie aanvaar 'n lang loop gemiddelde variansie vlak. So, die konsep van wisselvalligheid beteken terugkeer is nie vasgevang word deur die EWMA. Die ARCH / GARCH modelle is beter geskik vir hierdie doel. Lambda 'n Sekondêre doel van EWMA is om veranderinge in die wisselvalligheid op te spoor, sodat vir klein waardes, onlangse waarneming beïnvloed die skatting stiptelik, en vir waardes nader aan een, die skatting veranderinge stadig onlangse veranderinge in die opbrengste van die onderliggende veranderlike. Die RiskMetrics databasis (wat deur JP Morgan) en openbare beskikbaar gestel in 1994, gebruik die EWMA model met vir die opdatering daagliks wisselvalligheid skatting. Die maatskappy het bevind dat oor 'n reeks van die mark veranderlikes, hierdie waarde van gee voorspelling van die variansie wat die naaste aan besef variansie koers kom. Die besef variansie tariewe op 'n bepaalde dag is bereken as 'n ewe-gemiddelde van die daaropvolgende 25 dae. Net so, om die optimale waarde van lambda bereken vir ons datastel, moet ons die besef wisselvalligheid by elke punt te bereken. Daar is verskeie metodes, so kies een. Volgende, bereken die som van 'n vierkant foute (SSE) tussen EWMA skatting en besef wisselvalligheid. Ten slotte, verminder die SSE deur wisselende die lambda waarde. Klink maklik dit is. Die grootste uitdaging is om in te stem op 'n algoritme om besef wisselvalligheid bereken. Byvoorbeeld, die mense by RiskMetrics verkies die daaropvolgende 25-dag te besef variansie koers bereken. In jou geval, kan jy 'n algoritme wat daaglikse volume gebruik, MI / LO en / of openbare-close pryse te kies. Vrae Q 1: Kan ons gebruik EWMA om te skat (of voorspel) wisselvalligheid meer as 'n stap vorentoe Die EWMA wisselvalligheid verteenwoordiging nie aanvaar 'n langtermyn gemiddelde wisselvalligheid, en dus, vir enige vooruitsig horison meer as een-stap, die EWMA gee 'n konstante waarde: Hoe om Geweegde bewegende gemiddeldes in Excel bereken aan die hand Eksponensiële Smoothing Excel Data-analise vir Dummies, 2de uitgawe die eksponensiële Smoothing instrument in Excel bereken die bewegende gemiddelde. Maar eksponensiële gladstryking gewigte die waardes wat in die bewegende gemiddelde berekeninge sodat meer onlangse waardes het 'n groter invloed op die gemiddelde berekening en ou waardes het 'n mindere effek. Dit gewigte word bereik deur 'n glad konstante. Om te illustreer hoe die eksponensiële Smoothing program werk, veronderstel dat you8217re weer te kyk na die gemiddelde daaglikse inligting temperatuur. Om geweegde bewegende gemiddeldes te bereken met behulp van eksponensiële gladstryking, neem die volgende stappe: Om 'n eksponensieel stryk bewegende gemiddelde te bereken, eerste kliek op die data tab8217s Data-analise opdrag knoppie. Wanneer Excel vertoon die dialoog Data-analise boks, kies die eksponensiële Smoothing item uit die lys en kliek op OK. Excel vertoon die dialoog Eksponensiële Smoothing boks. Identifiseer die data. Om die data waarvoor jy 'n eksponensieel stryk bewegende gemiddelde bereken identifiseer, klik in die Invoer Range tekskassie. Identifiseer dan die insette reeks, óf deur te tik 'n werkblad verskeidenheid adres of deur die kies van die werkblad reeks. As jou insette reeks sluit in 'n teks etiket om te identifiseer of jou data beskryf, kies die etikette boks. Verskaf die smoothing konstante. Tik die glad konstante waarde in die dempingsfaktor tekskassie. Die Excel Help lêer dui daarop dat jy 'n glad konstante van tussen 0,2 en 0,3 gebruik. Vermoedelik, maar indien you8217re gebruik van hierdie instrument, jy jou eie idees oor wat die korrekte glad konstante is. (As you8217re clueless oor die glad konstante, miskien het jy shouldn8217t word met behulp van hierdie instrument.) Vertel Excel waar die eksponensieel stryk bewegende gemiddelde data te plaas. Gebruik die Uitset Range tekskassie om die werkblad reeks waarin jy die bewegende gemiddelde data plaas identifiseer. In die werkkaart voorbeeld, byvoorbeeld, jy die bewegende gemiddelde data te plaas in die werkblad verskeidenheid B2: B10. (Opsioneel) Chart die eksponensieel stryk data. Om die eksponensieel stryk data karteer, Kies die diagram Uitgawe boks. (Opsioneel) Dui wat jy wil standaardfout inligting bereken. Standaard foute te bereken, kies die standaard foute boks. Excel plekke standaard fout waardes langs die eksponensieel stryk bewegende gemiddelde waardes. Nadat jy klaar spesifiseer wat bewegende gemiddelde inligting wat jy wil berekende en waar jy wil dit geplaas word, klik op OK. Excel bereken bewegende gemiddelde information.7.3.7 eksponensieel Geweegde bewegende gemiddelde (EWMA) 7.3.7 eksponensieel Geweegde Moving gemiddelde tot die aannames van versoen eenvormig geweeg bewegende gemiddelde (UWMA) skatting met die realiteite van die mark heteroskedasticity, kan ons beramer 7.10 van toepassing op slegs die mees onlangse historiese data TQ. wat die meeste weerspieël die huidige marktoestande moet wees. Deur dit te doen, is self verslaan, soos die toepassing van beramer 7.10 'n klein hoeveelheid van die data sal sy standaard fout verhoog. Gevolglik UWMA behels 'n verknorsing: toe te pas op 'n baie data is sleg, maar so is dit toe te pas om 'n bietjie data. Dit gemotiveerde Zangari (1994) om 'n wysiging van UWMA genoem eksponensieel geweeg bewegende gemiddelde (EWMA) estimation.2 Dit geld 'n nonuniform gewig te tydreeksdata, sodat 'n baie data gebruik kan word voor, maar onlangse data is swaarder geweeg . Soos die naam aandui, is gewigte gebaseer op die eksponensiële funksie. Eksponensieel geweeg bewegende gemiddelde skatting vervang beramer 7.10 met waar verval faktor in die algemeen 'n waarde tussen 0,95 en 0,99 opgedra. Laer verval faktore is geneig om onlangse data swaarder gewig. Let daarop dat eksponensieel geweeg bewegende gemiddelde skatting is wyd gebruik word, maar dit is 'n beskeie verbetering op UWMA. Dit poog nie om die mark voorwaardelike heteroskedasticity model nie meer as UWMA doen. Sy gewig skema vervang die verknorsing van hoeveel data om te gebruik met 'n soortgelyke dilemma oor hoe aggressief n verval faktor om te gebruik. Oorweeg weer uitstal 7.6 en ons voorbeeld van die dollar 10mm posisie is SGD. Kom ons skat 10 1 Gebruik eksponensieel geweeg bewegende gemiddelde beramer 7.20. As ons gebruik 0,99, kry ons 'n skatting vir 10 1 van 0,0054. As ons gebruik 0,95, kry ons 'n skatting van 0,0067. Hierdie stem ooreen met onderskeidelik posisioneer waarde-op-risiko resultate van USD 89.000 en dollar 110,000. Oefeninge Exhibit 7.7 dui 30 dae van data vir 1-maand CHF Libor. Exhibit 7.7: Data vir 1-maand CHF Libor. Tariewe word uitgedruk as persentasies. Bron: Britse Bankers Association (BBA).


No comments:

Post a Comment